Universal duality in conic convex optimization

نویسندگان

  • Simon P. Schurr
  • André L. Tits
  • Dianne P. O'Leary
چکیده

Given a primal-dual pair of linear programs, it is well known that if their optimal values are viewed as lying on the extended real line, then the duality gap is zero, unless both problems are infeasible, in which case the optimal values are +∞ and −∞. In contrast, for optimization problems over nonpolyhedral convex cones, a nonzero duality gap can exist when either the primal or the dual is feasible. For a pair of dual conic convex programs, we provide simple conditions on the “constraint matrices” and cone under which the duality gap is zero for every choice of linear objective function and constraint right-hand side. We refer to this property as “universal duality”. Our conditions possess the following properties: (i) they are necessary and sufficient, in the sense that if (and only if) they do not hold, the duality gap is nonzero for some linear objective function and constraint right-hand side; (ii) they are metrically and topologically generic; and (iii) they can be verified by solving a single conic convex program. We relate to universal duality the fact that the feasible sets of a primal convex program and its dual cannot both be bounded, unless they are both empty. Finally we illustrate our theory on a class of semidefinite programs that appear in control theory applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conic optimization: an elegant framework for convex optimization

The purpose of this survey article is to introduce the reader to a very elegant formulation of convex optimization problems called conic optimization and outline its many advantages. After a brief introduction to convex optimization, the notion of convex cone is introduced, which leads to the conic formulation of convex optimization problems. This formulation features a very symmetric dual prob...

متن کامل

Convex Optimization Models: An Overview

1.1. Lagrange Duality . . . . . . . . . . . . . . . . . . p. 2 1.1.1. Separable Problems – Decomposition . . . . . . . p. 7 1.1.2. Partitioning . . . . . . . . . . . . . . . . . . p. 9 1.2. Fenchel Duality and Conic Programming . . . . . . . . p. 10 1.2.1. Linear Conic Problems . . . . . . . . . . . . . p. 15 1.2.2. Second Order Cone Programming . . . . . . . . . p. 17 1.2.3. Semidefinite Progr...

متن کامل

Weak and Strong Duality Theorems for Fuzzy Conic Optimization Problems

The objective of this paper is to deal with the fuzzy conic programming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a specific ordering cone is established based on the parameterized representation of fuzzy numbers. Under this setting, duality theo...

متن کامل

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

A D-Induced Duality and Its Applications

This paper attempts to extend the notion of duality for convex cones, by basing it on a prescribed conic ordering and a fixed bilinear mapping. This is an extension of the standard definition of dual cones, in the sense that the nonnegativity of the inner-product is replaced by a pre-specified conic ordering, defined by a convex cone D, and the inner-product itself is replaced by a general mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 109  شماره 

صفحات  -

تاریخ انتشار 2007